Analisis Kepuasan Pelanggan Dengan Menggunakan Komparasi Fuzzy Inference System Metode Sugeno Dan Tsukamoto Pada Hotel Kristal Jakarta

Authors

  • Achmad Sehan Universitas Pamulang

Abstract

Customer satisfaction is the most important part which is influenced by several factors, such as: quality of service, price, atmosphere & product. Customer satisfaction encourages customers to commit to a company's products and services so that it has an impact on increasing sales of a product. The problem taken from this research is that in the last 2 years from 2019-2020 the number of consumers at Kristal Hotel has decreased. The purpose of this research is to find out how big the level of customer satisfaction with the services of Hotel Kristal by comparing the two Fuzzy Inference System methods, the Sugeno method and the Tsukamoto method. There are five attributes that will be used, namely service quality, product quality, price quality and atmosphere quality as input attributes, while the output attribute is customer satisfaction. The level of customer satisfaction itself is not satisfied, less satisfied, quite satisfied, satisfied and very satisfied. The research data was sampled by distributing questionnaires to 100 consumer respondents at Crystal Hotel at random. In this study, a comparative analysis of the results of the Sugeno method and the Tsukamoto method was carried out by testing using MAPE with the MATLAB toolbox to determine the most accurate method in determining customer satisfaction from Hotel Kristal. So that the Management can take steps which sectors need to be improved so that Crystal Hotel again gets more consumers.

References

Abidah, S. (2016). Analisis Komparasi Metode Tsukamoto Dan Sugeno Dalam Prediksi Jumlah Siswa Baru. Jurnal Teknologi Informasi dan Komunikasi, ISSN:2087-0868, Volume 7 Nomor 1 Maret 2016 , 57-63.

Abza, A. T. (2018). Identifikasi Tingkat Kepuasan Pelayanan Konsumen Industri Televisi Berlangganan Dengan Logika Fuzzy Metode Tsukamoto. Jurnal Intra-Tech Volume 2, No.1 April 2018 ISSN. 2549-0222 , 16-30.

Agustin, V. R., & Irawan, W. H. (2015). Aplikasi Pengambilan Keputusan Dengan Metode Tsukamoto Pada Penentuan Tingkat Kepuasan Pelanggan (Studi Kasus Di Toko Kencana Kediri). Jurnal Matematika Volume 4 No.1 November 2015 , 11-15.

Ayuningtias, L. P., Irfan, M., & Jumadi. (2017). Analisa Perbandingan Logic Fuzzy Metode Tsukamoto, Sugeno, Dan Mamdani (Studi Kasus : Prediksi Jumlah Pendaftar Mahasiswa Baru Fakultas Sains Dan Teknologi Universitas Islam Negeri Sunan Gunung Djati Bandung). Jurnal Teknik Informatika, April 2017 ISSN 1979-9160 , 9-16.

Bandyopadhyay, S., Mistri, H., Chattopadhyay, P., & Maji, B. (2013). Antenna Array Side Lobe reduction by Implementing Non-Uniform Amplitude Using Tsukamoto Fuzzy Logic Controller. International Journal of Electronics & Communication Technology (IJECT)-vol IV issue spl I , 58-61.

Batubara, S. (2017). Analisis Perbandingan Metode Fuzzy Mamdani Dan Fuzzy Sugeno Untuk Penentuan Kualitas Cor Beton Instan. IT Journal Research and Development e-ISSN: 2528-4053 Vol.2, No.1, Agustus 2017 , 1-11.

Garcia, M. M., & Annabi, H. (2002). Customer Knowledge Management. Journal of the Operational Research Society 53 , 875-884.

Ghozali, I. (2009). Aplikasi Analisis Multivariate dengan menggunakan SPSS, Cetakan Ke IV. Semarang: Badan Penerbit UNDIP.

Heizer, J., & Barry, R. (2015). Operations Management (Manajemen Operasi), ed.11, Penerjemah: Dwi anoegrah wati S dan Indra Almahdy. Jakarta: Salemba Empat.

Hidayanti, W. A., Honggowibowo, A. S., & Suhayati, M. (2013). Analisis Perbandingan Metode Fuzzy Inferensi Sistem Tsukamoto Dan Hidayati, T., & Ikasari, I. H. (2020). Developing Ict-Based Calculus Learning Media. JPMI (Jurnal Pendidikan Matematika Indonesia), 5(1), 10-15.

Mamdani Dalam Penentuan Estimasi Jumlah Produksi Gula. Volume 2, Nomor 1, Mei 2013 , 151-162.

Kotler, P., & Amstrong, G. (2012). Principles of Marketing, 15th Edition. New Jersey: Pearson Education Limited.

Kotler, Philip, & Armstrong, G. (2014). Principle Of Marketing, 15th edition. New Jersey: Pearson Prentice Hall.

Kurniawan, W., & Hidayati, T. (2020). Ethnomathematics in Borobudur Temple and Its Relevance in Mathematics Education. Jurnal Pendidikan Progresif, 10(1), 91-104.

Kusumadewi, S., & Hartati, S. (2006). NNeuro Fuzzy: Integrasi Sistem Fuzzy & Jaringan Syaraf. Yogyakarta: Graha Ilmu.

Kusumadewi, S., & Purnomo, H. (2010). Aplikasi Logika Fuzzy Untuk Sistem Pendukung Keputusan Edisi Pertama. Yogyakarta: Graha Ilmu.

Mandasari, Tama, & Sriwijaya. (2011). Analisis Kepuasan Konsumen Terhadap Restoran Cepat Saji Melalui Pendekatan Data Mining : Studi Kasus XYZ. Jurnal Generik , 4-7.

Perbankan, P. P., Pelayanan, M., Bank, P. T., Indonesia, N., Tbk, P., & Jakarta, U. (2014). Peran Produk Perbankan, Mutu Pelayanan Dan Kepuasan Nasabah Bagi Kinerja PT Bank Negara Indonesia (Persero) Tbk. Di KCU Utama Jakarta. Jakarta: Peran Produk Perbankan, Mutu Pelayanan Dan Kepuasan Nasabah Bagi Kinerja PT Bank Negara Indonesia (Persero) Tbk. Di KCU Utama Jakarta.

Priyanto, D. (2012). Cara Kilat Belajar Analisis Data dengan SPSS 20. Yogyakarta: Andi Offset.

Ramaz, Mandiri, & Jaka. (2014). Pengaruh Kualitas Pelayanan Dan Kepuasan Pelanggan Terhadap Loyalitas Pelanggan PT. D’Ramaz Putra Mandiri Di Jakarta. Jakarta: Media Manajemen Jasa.

Riduwan. (2009). Pengantar Statistika Untuk Penelitian Pendidikan, Sosial, Ekonomi Komunikasi, dan Bisnis. Bandung: Alfabeta.

Sari, R. (2017). Komparasi Algoritma Support Vector Machine, Naïve Bayes Dan C4.5 Untuk Klasifikasi SMS. IJCIT (Indonesian Journal on Computer and Information Technology) Vol.2 No.2, ISSN: 2527-449X E-ISSN:2549-7421 , 7-13.

Surdyanto, A., & Kurniawan, W. (2020). Developing critical reading module using integrated learning content and language approach. Studies in English Language and Education, 7(1), 154-169.

Downloads

Published

2022-09-07 — Updated on 2022-09-12

Versions